

DETECTOR ACTIVITIES AT FZJ - JCNS

ICND Meeting @ FZJ

OCTOBER 27, 2019 I R. ENGELS, G. KEMMERLING

HEADLINE

- DREAM Detector
 - End-Cap Detector Test
 - Results of these Test's from beamline V20@HZB
- SoNDe Detector Updates
 - Tile and 3x3 Demonstrator
 - Detector Design and Heat Simulation
- Summary

TEST OF END-CAP DETECTOR

prototype for DREAM@ESS

- Diffraction Resolved by Energy & Angle Measurements (DREAM)
 - versatile & flexible Powder diffractometer
 - FZJ, LLB, ESS
- Detectors overview
 - based on boron coated cathode layers of multi-wire chambers from CDT
 - several detection layers with inclined geometry of 10° relative to incoming neutrons
 - mantle detectors for cylindrical barrel, end-cap detectors for forward-/backward-sections
 - technologies already used similarly for future POWTEX instrument at FRM2

DREAM END-CAP DETECTORS

- End-cap detectors for DREAM forward-/backward-directions
 - build up in ϕ by 12°-segments sub-structured in 4 submodules
 - each module with several 2-layer MWPCs with boron coated segmented cathodes (inclined geometry of 10° relative to incoming neutrons)
 - 3D hit position (voxel) identified through anode/cathode signal coincidence
 - mechanics with a lot of individual designed parts mounted with several different rotation angles (complicated voxel map)

- DREAM end-cap prototype detector
 - 1 mounting unit (12°-segment with 4 submodules
 - measurements with up to 12 boron layers
 - production completed at CDT
 - tested at HZB beamtime (Jul. 2019)

TEST SETUP AT ESS TEST BEAMLINE V20@HZB

- Goals of measurements
 - functional test of end-cap segment under operation conditions
 - verification of complicated 3D-voxel structure with validity check of position reconstruction
 - demonstration of detector capability by sample measurements
- Experimental setup
 - mounting of 12° end-cap segment in backscattering geometry similar to later arrangement at DREAM
 - total angular 2θ-range ~138° 166°
 - average of L_{ToF} about 30 m from source chopper
 - measurements with source -& WFM-chopper
 - usage of POWTEX readout electronics
 - side-shielding of detector with B₄C
 - frame also designed for later use with mantle detector

TEST RESULTS: CU & GRAPHITE W. SOURCE CHOPPER

Parameters for L_{tof}, chopper timing etc. together with hit times allow for wavelength calculations. Values match well with peak wavelengths of Cu and graphite.

Complicated 3D-voxel structure validated by correct Bragg peak positions reconstruction

TEST RESULTS: CU CRYSTAL SOURCE-/WFM-CHOPPER

- Peak positions match well with expected Cu peaks without & with WFM chopper
- Wavelength resolution compliant to expected wavelength resolution of choppers.

TEST RESULTS: NI-POWDER MEASUREMENTS W. WFM-CHOPPER

- Succeeded in process of stitching spectrum according to WFM chopper windows.
- Further refinements will be done.

SoNDe Detector Updates

ADHESIVES TEST

Spectrophotometer

- Vitralit® VBB-N / UV 2725
 - Flexible
 - solvent-free UV-curing acrylate adhesive
 - transparent
- Viscosity [mPas] 50-150 (VBB_N) {Sample 1}
- Viscosity [mPas] 200-400 (UV2275) {Sample 2}
- approx. 6% different before and after
- Spectrometer
 - UV/Vis Resolution ≤ 0.05 nm
- Wavelength Accuracy +/- 0.08 nm UV/Vis

MAPMT

Outside dimensions

440 MaPMTs were scanned

120

100

80

60

40

- no broken one -> ALL OK
- all are fullfilling the outer 20 dimensions in the given $specs_{0,0}^{\circ}$
- the calculation and comparison for the pixel gain variation is on going
- uncertainty :
- Inhomogeneity within the pixel Mitglied der Helmholtz-Gemeinschaft

Status End of 2018

-JCNS

🔶 🔶 🔶 🔶

— y [mm]

CONCENTRATOR BOARD

- all needed materials were sent to Oslo to finally assemble the concentrator board
- all FEBs are with the JCNS and ready to use
- connector boards are expected to deliver together with the concentrator

boards soon in Juelich

TILE

Drawings / Model

- MaPMT mid/mid 52,5mm
- outer dimensions of a tile
 - ~104,5 mm squared
 - ~230,0 mm depth

TILE

JÜLICH

Forschungszentrum

DETECTOR SUBSET DEMONSTRATOR

3x3 Tile Demonstrator – Drawing / Model

Source: ZEA-1

DETECTOR SUBSET DEMONSTRATOR

- outer dimensions of the demonstrator
 - width 340,0 mm
 - height 420,0 mm

HEAT CALCULATION / SIMULATION

Tile of SoNDe

- simulations were made for different airflow
- uncertainty :
 - PCB stacking
 - heat transfer in chips

Temperature (PCB + Chips) in °C

DETECTOR HOUSING CUT

DETECTOR HOUSING

Mitglied der Helmholtz-Gemeinschaft

Detector housing cut rear view

Source: ZEA-1

Jülich Centre for Neutron Science

DETECTOR TANK

Not Finalized - Preliminary

- Detector Tank design is ongoing
- Detector is planned to be off center
- Detector in and out via fork lift for maintenance/repair

Det 1_4m

Door positi

000

Source: CEA

Det3_21m

Det2_20m

SUMMARY

- DREAM Detector Tests were successful
- SoNDe
 - concentrator board is finished and tested
 - scintillators are ready to mount to the tested MaPMTs
 - tile is in the commission phase
 - part of the detector housing is in production
 - future neutron test's are planed for the ROSMAP MP and the demonstrator

