Detector Update-SNS

R. Riedel

Oak Ridge National Lab

ICND Collaboration Meeting-2019

ORNL is managed by UT-Battelle for the US Department of Energy

Events since last meeting

- November 2018 HFIR operation was suspended.
 - Core/fuel element review
 - Restart Oct 29
- March 2019 SNS operation went into a long shut down (3 months) due to mercury cooling loop issues. Restarted in July.
- December 2018: Triennial Review conclusions received.
- Second Target Station directorate formed.
- Ken Anderson to head technologies division.
- Budget is stable with additional money expected for second target station.

Detector R&D efforts

- High rate detectors for reflectometers
- Anger Cameras...better resolution..better gamma rejection.
- Timepix3 T.O.F imaging detector (25um resolution).
- WLSF

Second Target Station Update

- Cold pulsed source to complement FTS and HFIR.
- Multiple reviews and workshops over the last two years.
- 15Hz repetition rate using pulse stealing.
- Small moderators
- Rotating target.
- Eight instruments are planned for the initial instrument suite.
- John Haines will head the directorate.

STS complements the strengths of FTS and HFIR

- FTS optimized for the sharpest neutron pulses (decoupled, poisoned moderators)
 - Highest wavelength resolution ($\Delta\lambda/\lambda$: 0.05 to 0.15%
 - Emphasizes short wavelength neutrons
- HFIR optimized for highest time-average ٠ neutron brightness
 - Low-wavelength resolution (λ/λ : 0.1 to ε 10%) _
 - Pinpoint focus into _ reciprocal space
- STS optimized for high peak brightness cold neutrons
 - Modest wavelength resolution ($\Delta\lambda/\lambda$: 0.1 to 0.6%)
 - Time-resolved phenomena _ across a large range of length scales

4x10¹⁴

Evolution of coupled moderators at SNS

STS 3 cm tall cvlinder

STS 3 cm tube

5 Å

STS Cylinder and Tube Moderator: Gains over FTS

 Timeintegrated and peak brightness gains compared to FTS coupled moderator

STS will deliver world leading cold neutron peak brightness

Second Target Station

- Second Target Station will provide a new instrument hall with world class cold neutron brightness
 - Approximate Cost ~\$1.5B

A neutron instrument view of **STS**

a

Proposed Eight Initial Instruments

Instrument Upgrade progress

• HFIR

- WAND
- Residual Stress
- HB-3a
- CG-4b
- SANS

• SNS

- New electronics—including preamps, power supplies and communication links at ARCS
- Four additional eightpaks at SEQUIOA

11

WAND Installation

Detector Formerly at LANSE PCS

Radial Collimator

WAND PCS Detector ready for operation

New detector (DENEX) installed at HFIR HB-2B Beam Line - initial commissioning underway (motion control, testing with Cf-252) - awaiting HFIR restart to commission with beam neutrons

Front View showing detector entrance window

Rear View showing neutron/gamma shielding enclosure

New 3D printed collimator installed

DENEX Detector is Delay Line Type

HB-3a Engineering Drawing

Three Detectors Installed. Awaiting beam.

Additional Six to be installed

New Additions to HFIR Beam Lines

New guides for SANS Instruments

F. Li, J. Appl. Cryst. (2014). 47, 1849–1854

19

Detector R&D

- Pixelated detector
- Anger Camera.
- Timepix3/MCP Imaging Detector
- High Speed Image Analysis
- WLSF

20

Pixelated Detector

2mm C.C. SiPM Sensor Array

Linear to limit of MURR beam flux

HIGH FLUX ISOTOPE

National Laboratory REACTOR

NEUTRON

Pixelated GS20 scintillator

Anger Camera at Phoenix DD gun facility

CAK RIDGE National Laboratory

Exposed to direct beam.

Timepix3-MCP Imaging Detector

Timepix3

2x2 Timepix3 array (28mm x 28mm)

Control Board and Timepix3 array purchased from ASI

Vacuum Vessel

Control/Interface Board

Image Processing: Scintillation Pinpointing

- Goal is Real Time Processing
- Process 1 image on a CPU core:
 - Least-Squares 2D-Gaussian fits = ~ bour
 - Full image filter based on DoG = (12 seconds
- Process 1000 images on 100 CPU cores:
 - Least-Squares 2D-Gaussian fits = ~ 10 hours
 - Full image filter based on DoG = 2 minutes
- Process 1 image on a GPU:
 - Full image filter based on DoG(= 0.15 ms
- Process and transfer 1000 images with GPU:
 - Full image filter based on DoG = 3 minutes
 - Much of the transfer time probably can be eliminated

6,000 processed: 33 MPixel output image

Overall Results:

Events > 20

50% MTF resolution is ~350 microns

Events > 70

50% MTF resolution is ~150 microns

Better Case; higher threshold used.

GEN2 WLSF

- Improved y-axis resolution. (1cm)
- No encoding
- Double scintillator.
- X-axis interpolation

Scintillator replaces diffuse Alzak

GEN2 WLSF at Instrument Testing

30% improvement in resolution at backscattering position.

