

Update on J-PARC detector development efforts

Kaoru Sakasai Materials & Life Science Division (MLF) J-PARC Center

MLF Beam Power Status

- MLF beam power: 500 kW and very stable
- ~1MW operation achieved last year (1 hour) and this year (almost 1 day)
- Our mercury target vessel works well

MLF mercury target

MLF Beam Power :932kW

MLF beam power, as of July 3, 2018

Outline

1. Introduction of our installed detectors at J-PARC MLF

2. Upgrading of the installed detector

Outline

1. Introduction of our installed detectors at J-PARC MLF

2. Upgrading of the installed detector

Commercially available

Our Scintillator detectors installed at the MLF

iBIX (BL03): Bio-single crystal diffractometer

SENJU (BL18):TAKUMSingle crystal diffractometerResidua

TAKUMI (BL19): Residual Stress diffractometer

High spatial resolution detector

- WLS Fiber technology
- pixel size : 0.5 x 0.5 mm²
- sensitive area : 133 x 133 mm²
- detection efficiency: ~50% for 1.8Å
- gamma sensitivity: ~1 x 10⁻⁶

Preinstalled 14 detectors are renewed, and other 16 detectors are produced.

Total 30 detectors are working now at BL03

Large area detector

WLS Fiber technology

- pixel size : 4 x 4 mm²
- sensitive area : 256 x 256 mm²
- detection efficiency: ~40% for 1.8Å
- gamma sensitivity: ~ 3 x 10⁻⁶

The last 6 detectors are installed to complete the detector system.

Total 37 detectors are working now at BL18

One dimensional large area detector

- Coded fiber technology (with ISIS)
- pixel size : 3 x 200 mm²
- sensitive area : 200 x 1000 mm²
- detection efficiency: >50% for 1.0Å
- gamma sensitivity: < 1 x 10⁻⁶

10 detectors firstly installed,
2 detectors were added.
2016 JAEA president's award

Total 12 detectors are working now at BL19

Unique instruments using WLS fiber detector in the world Special thanks to ISIS det. group

Gas-based Detector System for BL17

2D neutron detector (MWPC) system

Installed in MLF/BL17

- Multiwire-type detector element Wire pitch: 1 mm Sensitive area: 128 x 128 mm²
- Pressure vessel withstanding up to 8 atm
- Individual line readout
- Optical signal transmission

Sharaku(BL17): polarized neutron reflectometer

Specifications of MWPC

- Position resolution: 1.8mm FWHM
- >2D Uniformity: 8.3% deviation
- Counting Linearity: >5 decades
 - (> 2 x 10⁵ cps)
- Position linearity error: <0.5%</p>
- ➤Gamma sensitivity: <10⁻⁷
- ➢Neutron detection efficiency: >80%

Gas-based Detector System for BL17

Signal processing scheme with individual line readout

- ASD-ASICs for multi-channel signal processing
- **Optical transmission from detector head to DAQ device**
- Position encoder with FPGA

Some performances of MWPC

High pressure operation of MWPC

It is necessary to increase the gas pressure of MWPC to achieve high detection efficiency with a thin conversion gap. As a result of demonstration experiments, we have confirmed good operation of the MWPC with high gas pressure of 0.8 Mpa.

The specially-fabricated pressure vessel with the conversion gap of 20 mm. The vessel can withstand pressures of up to 0.8 MPa.

With pressure of 0.8 MPa (He/CF₄ = 0.71/0.09), detection efficiency for thermal neutron is 86.9%.

Outline

1. Introduction of our installed detectors at J-PARC MLF

2. Upgrading of the installed detector

Our Mission for Neutron Instruments

Upgrading of our installed detectors

SHARAKU (BL17): Polarized neutron reflectometer

Detector: MWPC

Under Improvement of the Detector Head - high spatial resolution

- high count rate capability

SENJU (BL18): Single crystal diffractometer Detector: 2D scintillator WLSF detector

- Development of slim detectors and a large area detector for new vacuum vessel to be installed at BL18

Upgrading of gas-based detector at BL17

Improvement of charge collection element of MWPC

The charge collection element of MWPC is being improved to be a <u>simple and efficient charge collection configuration</u> for improvement of manufacturability and maintainability, and increase of detector signal, aiming to establish high detector performances

Comparison of new head consisting bump cathode elements with conventional one

Conventional head has two cathodes for X and Y, and is a little bit complicated. Newly developed head is simple and has good manufacturability

Entire and partially magnified photograph of a developed bump cathode element.

Upgrading of gas-based detector at BL17

Numerical Simulation for Bump cathode element head

Simulation was conducted to study the electric behavior of the detection system using the bump cathode element. The strong charge density was obtained at the center and the edge of the cathode bumps.

Upgrading of gas-based detector at BL17

Uniformity measurement with Bump cathode element head

2D uniformity measurement results under neutron irradiation with Cf-252 source

Histogram of all pixel contents. Superior uniformity was obtained.

Some results with Bump cathode element head

Pulse-height distribution under neutron irradiation. Neutron signal peak can be observed.

The estimated intrinsic position error caused by the difference of track lengths of proton and triton.

Add-in two-dimensional scintillator detectors

New vacuum vessel to be installed, More detectors are required.

Design and Fabrication of New 2D detector at BL18

Preparation for installation of four detectors at BL18

All DAQ boards used at BL18 were upgraded and checked (2019.7-10)

Upgraded DAQ board (e.g., FPGA program renewed)

Preparation for installation of four detectors at BL18

After checking with MLF BL10 and Cf-252 Source (2019. 6-10), the four detectors were set at BL18 and being checked this October

A Prototype large area detector at BL18

DETECTOR SPECIFICATIONS

Detector efficiency	: 45% (@1.8 Å)
⁶⁰ Co gamma sensitivity	: 2 x 10 ⁻⁶
Pulse pair resolution	: 5 us
Fiber channel number	: 128 x2
Neutron-sensitive area	: 51.2 x 51.2 cm ² (~0.26 m ²)
Pixel size	: 4 x 4 mm ²
Physical size	: 60 x 60 x 20 ^d cm ³
Weight	: 30 kg

No degradation in fiber alignment position and in neutron sensitivity has been observed over one year after production.

For details, please visit our poster presentation;

NSS poster session II Date & Time: Wed. 10:20-12:10 Poster ID: 236 Poster Number: N-19-236 Location: Central 1

Title: "A Large Area Position-Sensitive Scintillation Neutron Detector for Upgrading SENJU Diffractometer"

Summary

- Developed and installed three scintillator detectors and one gas-based detector at J-PARC MLF.
- Installed detectors:

WLSF 2D scintillator detector at BL03 and BL18

1D fiber-coded scintillator detector at BL19

Gas-based 2D detector at BL17

- These detectors have been working well since their commissioning.
- Detector upgrade:

Newly developed head well demonstrated at BL17

Slim detectors produced and being installed at BL18

A prototype large area detector for BL18 fabricated and tested

Thank you for your attention