

UK Research

and Innovation

Current Status of Scintillation Detector Development at ISIS

Jeff Sykora, Erik Schooneveld, Nigel Rhodes, Martin Sharkey, Sarah Mann*, Nick Ferguson* and Giacomo Mauri

(Dan Pooley, Davide Raspino, Ben Weaver*, Annabelle Brooks*, Quintino Mutamba, Johnny Boxall, John Dreyer, Stefan Howarth, Slobodan Marceta) *Students

ICND

Manchester

27 October 2019

Instrument Development at ISIS

- Single Crystal Diffraction
- Reflectometry
- Powder Diffraction
- SANS/SEMSANS

Single crystal diffraction from NiFeCoGa

Low angle reflection, refraction and transmission from $\rm Al_2O_3$

Powder diffraction from NaCaAIF

Instrument → Detector Development at ISIS

- Single Crystal Diffraction
- Reflectometry
- Powder Diffraction
- SANS/SEMSANS

- Position Resolution
- Rate capability
- Size/Scalability
- Cost-effectiveness

 Further develop working technology

 Investigate novel approaches

Instrument Development at ISIS

- Single Crystal Diffraction
- Reflectometry
- Powder Diffraction
- SANS/SEMSANS

Single crystal diffraction from NiFeCoGa

esearch

SXD Current Configuration

	Current clear fibre detectors (2000)
Neutron detection efficiency @ 1.8Å	21%
Pixel size (mm ²)	3 × 3
Active area (mm ²)	192 × 192
Number of fibres	16384
Weight (kg)	~70
Total coverage	2π Sr

UK Research and Innovation

The 2D Solution

- 2D Crossed fibre array
- Efficiency
 - 2 x higher lithium content scintillator front and back
 - High light collection
- Rate capability
 - 4x more PMT channels (2×64 ch PMTs vs 32×1 ch PMTs)

UK Research and Innovation

Positioning

2 Dimensions

- Brightest fibre OR
- Simple centre of gravity calculation
 - 7 fibres centralised on fibre with max photon density
 - Separate (x,y) coordinates

High Resolution Prototyping

- 0.5 mm fibres
- 2 sets of 16 x 16 fibres
 - 1.5 mm pitch
 - 3 mm pitch
- Single 64-channel FPPMT

High Resolution Interpolation

2 ×1 mm holes on 4mm pitch

3 mm pitch Standard positioning

High Resolution Interpolation

3 mm pitch Standard positioning

High Resolution Trial on SXD

- 0.5 mm fibres
- 32 x 32 fibres
- 1.5 mm x 1.5 mm resolution
- Single 64-channel FPPMT

Old detector (Module 6)

3mm x 3mm

WSF detector (Module 1) 1.5mm x 1.5mm

Raw

UK Research and Innovation

9,10-Diphenylanthracene

Raw

Normalised to pixel area

UK Research and Innovation

Full Scale Demonstrator

- 1 mm fibres
- 64 x 64 fibres
- 3 mm pitch
- 2 × 64-channel FPPMTs

Installation on SXD

UK Research and Innovation

Results NaCI Sphere

Curves

Results NaCl Sphere

Curves

Results End of cycle

UK Research and Innovation

The problem

UK Research and Innovation

"Week old" results HoAgGe at 15K

"Week old" results HoAgGe at 15K

"Week old" results

HoAgGe at 15K

Single crystal diffraction Detector summary

	Current clear fibre detectors (2000)	High resolution WLSF detector (2018)	Full size WLSF module
Neutron detection efficiency @ 1.8Å	21%	67%	67%
Pixel size (mm ²)	3 × 3	0.75 × 0.75*	3 × 3 (1.5 × 1.5)*
Active area (mm ²)	192 × 192	48 × 48	192 × 192
Number of fibres	16384	64	128
Weight (kg)	~70	~6	~8

*With position interpolation

• We now have a cost-effective detector solution for significantly improving performance of single crystal diffractometers.

UK Research and Innovation

actimes contro

 New single crystal instruments like LMX and upgrades to existing instruments like HRPD are now feasible.

Instrument Development at ISIS

- Single Crystal Diffraction
- Reflectometry
- Powder Diffraction
- SANS/SEMSANS

- < 1mm position resolution
- High local rates
 - Direct beam
 - High reflectivity samples
- High global rates (divergent mode)

INTER development

INTER development

SHARD

Coping with high rates

- Segmented high aspect ratio 2D
- Limits number of possible fibre combinations
- Optically isolated rows for coarse pixilation
- 2.5mm bend radius fibres for close packing

SHARD Coping with high rates

- 1 mm fibres 16 mm wide
- 64 fibres vertically
 - 50-100 μm thick dividers between fibres
- Individual segments
 - Optically divided
 - Strips of scintillator front and back
- Walking coincidence fibre code
- Single 64 ch FP-PMT partitioned FPGA

Neutron beam-

UK Research and Innovation

Si reflection at low angle

INTER

Polymer on Si

Comparison to ³He tube (40 mm slit)

INTER Polymer on Si Comparison to ³He tube (40 mm slit)

UK Research and Innovation

INTER Polymer on Si Comparison to ³He tube (40 mm slit)

INTER Polymer on Si Comparison to ³He tube (40 mm slit)

SHARD Rates

SHARD Rates

- "Local" (within beam area) instantaneous peak rates
 - Linear until ~160 kcps
- Global (across detector) instantaneous peak rates
 - Limited to 320 kcps

Si reflection at low angle

• Rate dependent neutron misplacement (ghosting)

Due to fibre coding and scintillator afterglow

OFFSPEC00043760

New hybrid fibre coding option

- Optimise rate capability in a specified region
- Eliminates ghosting
- Keeps detector cost-effective

New hybrid fibre coding option

• Ghosting eliminated!

Sub-mm resolution?

- 0.5 mm fibres
 - 0.6 mm pitch
 - 30 mm wide
- 64 fibres vertically
- 100 µm thick dividers between fibres
- Strips of scintillator front and back
- Non-repeating walking coincidence fibre code
- Single 64 ch FP-PMT

Fibre	PMT A	PMT B
1	1	33
2	2	33
3	2	34
4	3	34
5	3	35
6	4	35
7	4	36
8	5	36

Currently installed and in use on INTER

Sub-mm resolution?

- 200 μ m slit close to the detector
 - ~250 μ m with divergence
- Integrate over time-of-flight

Sub-mm resolution!

- 200 μ m slit close to the detector
 - ~250 μ m with divergence
- Integrate over time-of-flight

Sub-mm resolution!

Sub-mm resolution on INTER Al₂O₃ block

• Walking coincidence does not have ghosting!

Sub-mm resolution on INTER Rates

• Rates consistent with other detectors

Functioning on INTER "Day old" data

Reflectometer Summary INTER detector solution

UK Research and Innovation

Reflectometer Summary

Detector	Timing resolution	Position Resolution	Local instantaneous peak rate capability	Issues
SHARD	< 5 µs	1.1 mm x 16 mm	1.8 kcps/mm ²	ghosting
Hybrid fibre coded	< 5 µs	1.1 mm x 30 mm	0.5 kcps/mm ² per segment	Ambiguous event positioning reduces efficiency
Half mm walking coincidence	< 5 µs	0.6 mm x 30 mm 0.25 mm x 30 mm*	1 kcps/mm ² per segment	None**
*Post processed interpolation **			*So far	

- A segmented approach provides a simple, cost effective solution to increasing rate capability for reflectometers
- Segments can be made in a variety of widths
- Position resolution at least as good as 0.6 mm with high potential to reach 0.25 mm
- An option for high resolution SEMSANS

Instrument → Detector Development at ISIS

- Single Crystal Diffraction
- Reflectometry
- Powder Diffraction
- SANS/SEMSANS

- Position Resolution
- Rate capability
- Scalability
- Cost-effectiveness

 Further develop working technology

 Investigate novel approaches

Novel Approaches Low afterglow ZnO:Zn/⁶LiF

Novel Approaches Li-Plastic Sion Richards Talk in IEEE

Peak Amplitude (bins)

PSD (bins)

Novel Approaches Li-Plastic Sion R

Sion Richards Talk in IEEE

Summary

- ZnS:Ag/⁶LiF WSF detectors continue to be developed and used for many techniques at ISIS.
- Now have cost-effective solutions capable of handling the required count rates for
 - high resolution single crystal diffraction and
 - high resolution reflectometry.
- Novel approaches to solving the inevitable challenge of very high count rates are progressing and showing promise.

Thank You!

UK Research and Innovation

Delft reflectometer detector

- 0.5 mm fibres
 - 0.55 mm pitch
- Single 64-ch PMT
 - 200 Fibres
 - Walking coincidence code

Fibre	PMT A	PMT B
1	1	33
2	2	33
3	2	34
4	3	34
5	3	35
6	4	35
7	4	36
8	5	36

UK Research and Innovation

Gamma (only) Sensitivity

Mass attenuation coefficients:

 $\mu/\rho = (\sigma_{\rm pe} + \sigma_{\rm coh} + \sigma_{\rm inc} + \sigma_{\rm pair})/uA$

 μ/ρ (0.66 MeV) for ZnS ~ 7.54x10⁻² cm²/g 0.7% attenuation in 0.9mm ZnS

 μ/ρ (1.22 MeV) for ZnS ~ 5.52x10⁻² cm²/g 0.5% attenuation in 0.9mm ZnS

UK Research and Innovation

At the 200 mV operating threshold:

- Sensitivity to ¹³⁷Cs gamma ~3x10⁻⁹
- Sensitivity to ⁶⁰Co gamma ~3x10⁻⁷