

Update on FRM II Detector Group Activities

I. Defendi, A. Howard, M. Panradl, R. Wildgruber, P. Wind, K. Zeitelhack

Gaseous detectors with solid ¹⁰Boron converter

FRM II doesn't pursue anymore a distinct project for gaseous detectors with solid ¹⁰Boron converter, but provides support to other detector groups

• SINE 2020: ¹⁰B-based RPC-detectors built by LIP Coimbra:

Test of novel anode substrate materials for RPCs with solid ${}^{10}B_4C$ converter at the beam line V17 at HZ Berlin

Study of different position reconstruction techniques with a double-gap RPC

The CHARM project

• 2-D curved ³He-based MWPC for powder diffraction instruments

Resent results of the 30° prototype built in collaboration with ILL and PSI Update on the production of two 130° full size detectors for ErwiN & DMC

Single-Gap RPC

Signal pick-up strips : X and Y

Detector operated with $C_2H_2F_4$ @ 1atm ¹⁰B₄C coatings provided by ESS / Linköping

Anode substrate materials

- Soda lime glass 0.35mm / 0.28mm thick, $\rho \approx 10^{13} \Omega cm$
- Low resistivity silicate glass 1mm thick, $\rho \approx 4 \times 10^{10} \Omega cm$
- **Ceramic composite** 2mm thick, $\rho \approx 10^{10} \Omega$ cm (provided by HZ Dresden)

Detector setup at V17 beam line at HZ Berlin (λ = 3.35A) during study of substrate materials

L. Margato et al.; LIP Coimbra

Pulse height spectra recorded for increasing incident neutron flux

Study of advanced position reconstruction techniques

"Standard" Centre-of-Gravity method vs. a statistical method based on a detailed model of the detector response function

Double gap RPC with 2D-readout mounted at the HZB V17 beam line

L. Margato et al.; *LIP Coimbra*

CHARM project update

5

Technische Universität München

Two curved ³He-based MWPCs covering 130° for powder diffractometers ErwiN & DMC

- 9 MWPC segments mounted seamlessly in a pressure vessel
- Fully modular design
- Individual wire / strip readout
- ToT-based CoG algorithm for position determination
- 2D-position, time & energy data
- Gas filling: 6.5bar 3 He + 1.5bar CF₄

Status 30° demonstrator

- Demonstrator built in collaboration with ILL & PSI to be installed at ErwiN as 2nd detector in 2020
- 2 MWPC segments covering 30°
- Frontend & Signal processing electronics built and tested at ²⁵²Cf-Lab source
- Development of FPGA firmware for online recognition ongoing

Status 130° full size detectors

- 24 MWPC segments built, #19 #24 still to be tested
- Pressure vessels built and CE-certified to EN 2014/68/EU
- Series production of readout electronics ongoing
- Integration of both detectors foreseen in first half of 2020

30° demonstrator

130° full size detector

- Individual readout of 128 (x) + 128 (y) channels per segment
- Position determination: Center of Gravity of ToT
- LIST mode: Position, Time Stamp, Energy (ToT Sum)

6

30° demonstrator mounted at ²⁵²Cf Lab-source

- No reactor operation at FRM II since March 2019 !
- Functionality test of FE- & signal processing boards
- First tests with final readout architecture
- Study of homogeneity
- Development of FPGA firmware for online recognition
- Study of long term stability (gas gain & purity) with "Helicoflex" metal seal

2D-position histogram for homogenous illumination with thermal neutrons

8

Technische Universität München

After more than 1 year of operation

 Increasing number of failing readout channels due to shorts (ρ ≈ 100Ω -1 kΩ) at 144-pin feedthrough

144-pin Electrical Feedthrough

- 144pin-feedthrough for high pressure (VACOM) pin diameter 0,5mm; Material: NiFe-alloy Au-plated
- Inside Flex-Rigid Connector: Insulator PEEK,

socket-type Fischer Elektronik BYL1K Material: Body: CuZn-alloy Ni+4-6µ Sn-plating; Spring: CuBe-alloy Ni+ 0,25µ Au plating

Pins on Ground potential; Max. current: 100nA

144-pin feedthrough & Flex-Rigid connector

Cause of failure

 Growth of Sn-whiskers of several mm of length inside the Fischer Elektronik socket, which occasionally touch the stainless steel flange of the 144-pin feedthrough

Views of sockets under a microscope

⇒ Old socket type has been replaced by a fully Au-plated version

Pressure vessel production

 Pressure vessels produced by ALCA Technology (I) Top hat flange: Stainless steel 1.4404 Vessel: Aluminium 5083 forged by Imbach & CIE (CH)

Procedures for Certification acc. EN 2014/68/EU

- Ultrasonic test of forged AI-5083 ring
- Production of standard samples and performance of tensile and hardness tests to confirm material parameters
- Dye test of vessel after production at ALCA
- He-leak vacuum test
- Pressure test at 7.7bar diff. pressure in bunker at PSI

Status update full size detectors

Technische Universität München

Automated wire tensioning

- 50 µm cathode wires at 100 g
- 15 µm anode wires at 35 g
- Wires wound with proper relative positioning using combs
- Winding two frames takes ~6 hours

Production of 24 MWPC segments

Soldering station

- Wire grids aligned using microscope
- Position controlled using precision screws (250 µm per revolution)

Status update full size detectors

Technische Universität München

X-ray test of segments

Scan of gas gain

- <u>Ar</u> CO₂ (80:20) flowed through vessel
- ⁵⁵Fe source moved over surface
- Anode spectrum measured at each point
- Sensitive to gain changes due to wiretension variations or misalignment

24 MWPC segments completed; already 18 tested successfully

RPC with solid ¹⁰B₄C converter:

- Single gap-RPC with various anode substrate materials tested at V17 beam line at HZ Berlin
- Low resistivity glass and ceramics show improved count rate capability allowing for up to 30 kHz/cm²
- Double gap RPC with standard glass used for study of advanced recognition techniques aiming at improved spatial resolution.

Update on CHARM project:

30°- prototype

- 30°- prototype built and problems with Flex-Rigid connectors solved
- FE- and Signal processing boards built and tests performed at ²⁵²Cf source
- Development of FPGA firmware for online recognition ongoing
- Implementation at ErwiN under construction

130°- full size detectors

- Pressure vessels of 130°-detectors built and CE certified acc. EN 2014/68/EU
- 24 MWPC module built, 6 still to be tested
- Series production of FE-readout electronics started
- Tooling for assembly in clean room under construction

Update on FRM II Detector Group Activities

³Helium based detectors:

• 2-D curved MWPC for powder diffraction instruments ERWIN & DMC

First results of a 30° prototype built in collaboration with ILL and PSI

Results presented in PSND2018

OW-04: I. Defendi:

"CHARM - A Prototype of a fast, high resolution curved ³He-based Multiwire- Proportional Chamber for the powder diffractometers DMC and ERWIN"

PT-10: A. Howard:

"Semi- automated wire winding, precise positioning and wire-tension control for a high-resolution curved Multiwire- Proportional Chamber"

30° Prototype (2 MWPC segments)

Technische Universität München

- Gas filling: *p* =1bar ³He + 5bar ⁴He + 1,5bar CF₄
- *MWPC* operated at gain G ~100
 U_a = 2100 V, *U_{drift}* = -1000V

Prototype @ TREFF

Collimated beam of λ = 4.73 A neutrons

Horizontal scan across two segments

Position spectra for five positions

1

CHARM project update

Fechnische Universität München

Curved ³He-based MWPC covering 130°

- 9 MWPC segments mounted seamlessly in a pressure vessel
- Fully modular design
- Individual wire / strip readout
- ToT-based CoG algorithm for position determination
- 2D-position, time & energy data

Angular coverage	≥ 130° (curved)
Aperture vertical	≥ 14° (200 mm)
Radius (anode)	800 mm
Wire Pitch & Gap	1,6 mm
Resolution horizontal	0,115°
Strip Pitch & Gap	1,6 mm
Resolution vertical	0,115°
Gas Mixture	6.5 bar ³ He+ 1.5 bar CF ₄
Gas Volume	200 bar * liter
Gas Depth	16,5 mm
Efficiency	75 % @ 1,8A
Nominal Gas Gain	~100
Counting rate	50 kHz / wire, 200 kHz / segment
Weight	290 kg

ERWIN: A new powder diffractometer @ FRM II

- MWPC design closely derived from BNL-design^[1]
- 30°- demonstrator built in collaboration with ILL & PSI to be installed at ErwiN as 2nd detector
- Two full size detectors under construction: ERWIN @ FRM-II, DMC @ PSI

[1] B. Yu et al. / Nuclear Instruments and Methods in Physics Research A 485 (2002) 645–652

30° Prototype

Technische Universität München

