ESS detector activities II

Kalliopi Kanaki Detector Systems Design Section Leader

ICND meeting, Manchester, 27.10.2019

Outline

- Updates in the DG organigram
- Coating activities
- Engineering on MultiGrid, MultiBlade and GdGEM
- Workshop status
- Beam monitors common project
- Simulation activities

Lots of it covered during IKON17: 2 detector sessions and 1 beam monitor session (URL)

Detector Group Organigram

Neutronic coatings Section at ESS Detector Coatings Workshop in Linköping

EUROPEAN SPALLATION SOURCE

ESS Detector Coatings Workshop in Linköping, established 2014

Linda Robinson Neutronic Detector Coatings Section Leader

Chung-Chuan Lai Coatings Scientist

Per-Olof Svensson Production Technician

Futher contact: linkoping@esss.se

Contact us if you want coatings!

Process development for ¹⁰B thin films

EUROPEAN SPALLATION SOURCE

Ti

DC magnetron sputtering of B₄C coatings

- Chemically stable compound
- Commercially available targets
- Well-established deposition technique
- Low-temperature process possible

AI

Thin film with maximized neutron detection efficiency:

- Good adhesion to substrates
- 1- or 2-side coating possible
- Large area possible
- High density
- Low impurity level
- Controllable thickness and uniformity
- Neutron radiation hard

Detector production

Receive and iteration of deposition requests

	CURPERAN SOURCE
	Deposition requests
	Send to <u>linkoping@esss.se</u> Please answer the questions that are applicable to your request
	Date 13/12/2017
	Name Ioannis Apostolidis
	Shipping address ESS Office
-	Phone number 0721792068
	Affiliation ESS
_ I	Project MG.24.J
	Type of collaboration with ESS -
	Short description of project (background, status so far, other useful
	information) Similar to MG.24.T
	Single or repeated coating request Single, blades are enough for a demonstrator
_ I	When would the depositions to be done Second week of January
L	Who provides the substantes large at feet 010 shipped by lease

Receive samples and holders

Sample characterization and documentation

Batch production of B4C coated samples

Continuous optimization of our production flow and quality!

Packing and shipment

Multigrid and Multiblade Our main focus detectors in Linköping

Multigrid - MG

- CSPEC and T-REX
- Estimated time to produce coatings for multigrid instruments 1-2 years / instrument

Multiblade - MB

- ESTIA and FREIA
- Estimated time to produce coatings for multiblade detectors 1-2 months / instrument

Production capacity for Multi Grid

Production capacity for MG

- Production speed expected to be around 400 runs/year
- 2 runs/day
- 360 Normal Blades (NB)/run, 240 Radial Blades (RB)/run
- 2.6 m²/run for MG, NB
- Approximately 1000 m² per year in full production
- Production cost below 1000€ per coated m²

QA and QC procedures and documentation in place Operation as a production line

Coatings for latest demonstrator

- Coatings for 300 grids were produced this summer with both NB and RB
- All runs were done in less than a month with 2 runs/day
- Production went smoothly with no bigger concerns

Process development done for our collaborators

 Coatings for temperature sensitive substrates or other more difficult substrates, such as Cu coated Kapton, soda-lime glass, SiN-SiC composite has been made

EUROPEAN SPALLATION

Engineering - MultiGrid

Engineering - MultiGrid

- MG.CSPEC 300 grids assembled as a dry run for production
- 5% of CSPEC grids built over 1.5 months this summer
- QC in place for: blade cutting, grid assembly, welding, training, blade traceability protocols integrated.
- Lessons learned have been fed back to the process
- About to receive a prototype vessel for a column

EUROPEAN SPALLATION SOURCE

ess

The NMX GdGEM demonstrator cross-section Detector prototype v0 "Zita"

Engineering - GdGEM

Engineering - GdGEM

- Full scale demonstrator gives signals
- To be tested next year
- Ready for production
- IKEA-like manual for assembly: <u>URL, page 12</u>

Engineering - GdGEM

- Full scale demonstrator gives signals
- To be tested next year
- Ready for production
- IKEA-like manual for assembly: <u>URL, page 12</u>

Workshops – Utgård and Mimir's well

> 1000 m²

 $700 \text{ m}^2 \text{ for DG}$

Workshops – Utgård and Mimir's well

Workshops – Utgård and Mimir's well

E04: first workshop at site (long instrument hall E01)

Beam monitors common project

- Ensure provision of monitors to enable science case of instruments and in particular early science success
- Allow efficient commissioning and long term facility monitoring
- Design, procurement, installation and cold commissioning of ~50 beam monitors for the ESS instruments from a few kW to 2 MW
- People involved:
 - Steven Alcock electronics engineer (15%-20%)
 - Ioannis Apostolidis mechanical engineer (50%)
 - Kalliopi Kanaki neutron scientist (50%)
 - Vendula Maulerová workshop assistant (50%)
 - Anders Lindh Olsson integration coordinator
 - Alessio Laloni detector technician
- Joint ILL-ESS researcher on BM with Bruno starting 1 December

Current BM locations

	Bunker		Guides-Choppers		Sample		
1. ESTIA	10.7m	11.1m				23m – Pre sample	
2. SKADI	Before HS			After bunker wall		Pre sample	Transmission
3. VESPA	7.38m	10.02m		20.02m		58.37m - Pre sample	59.6m – Transmission
4. ODIN	8.42m			23.7m		53m - pre sample	
5. DREAM						Pre sample	Transmission
6. NMX	BBG					Sample incident	
7. BEER	6.44m	9.875m				Pre sample (out of scope – HZG will build)	
8. CSPEC				28m	105.6m	160m – Pre sample	
9. BIFROST	6.9m			27.9m	80.1m	Pre sample	Transmission
10.MIRACLES	8.3m			54.6m		162.2m – Pre sample	163m – Transmission
11.MAGIC	6.7m					Pre sample (0.5-1.5m from sample)	
12.TREX	6m			108m		162m – Pre sample	Transmission
13.HEIMDAL	8.1m			20m		Pre sample	
14.FREIA	7m	8.3m	10.3m (or 14m)	16.25m		Pre sample	
15.LOKI	6.5m			15.5m (TBD)		Pre sample	Transmission (Snout) Transmission (Beam stop)

50+ monitors

Beam monitors per location and function

Location	BM options (√ : qualified, ? : work in progress)	Desired functionality	
	Fission chamber (flux $\times e f \leq 10^{12} \text{ n/cm}^2/\text{s}) \checkmark$	• Elux	
Bunker	Ionisation chamber (flux $\times e f \leq 10^{12} \text{ n/cm}^2/\text{s}) \checkmark$	 Timing Discrimination of thermal nys fast nys y 	
	GEM (flux × <i>e</i> ff ≤ 10 ⁸ n/cm²/s) ?		
	Semi-parasitic V monitor (10 ⁹ n/cm²/s) √	• Flux	
Guides/choppers	GEM (flux × <i>e</i> ff ≤ 10 ⁸ n/cm²/s) ?	 Timing (to be investigated further for V- and γ- manitom) 	
	Parasitic γ-monitor ?	monitors)	
Pre- and post-sample	MWPC (flux × eff ≤ 10 ⁵ n/cm ² /s) √ GEM (flux × eff ≤ 10 ⁸ n/cm ² /s) ?	FluxTiming	

Instrument participation status

#	Instrument / BM partner	Spatial envelope status	Indicative participation status
1	ESTIA / PSI	Design in CAD	Interested in utilities and services
2	ODIN / PSI	Reservations in CAD	Waiting for response from PSI
3	DREAM / FZJ	Reservations in CAD	Not interested for now
4	BEER / HZG	Reservations in CAD	Positive for bunker BMs / remaining BMs from HZG
5	CSPEC / TUM	Reservations in CAD	Waiting for response from TUM
6	BIFROST / DTU	Reservations in CAD	Positive / expecting offer from ESS
7	MAGIC / FZJ	Reservations in CAD	Waiting for response from FZJ
8	LoKI / ISIS	Reservations in CAD	NitroGEM option
9	SKADI / JCNS	Reservations in CAD	Positive / first offer sent from ESS to JCNS
10	VESPA / CNR, ISIS	Reservations in CAD	Waiting for response from CNR/ISIS
11	NMX / ESS	Reservations in CAD	positive
12	MIRACLES / ESS Bilbao	Reservations in CAD	positive
13	T-REX / CNR	Waiting: contacted	Waiting for response from CNR
14	HEIMDAL / AU	Meeting at IKON16: Waiting on information	Waiting for response from AU
15	FREIA / ISIS	Reservations in CAD	positive

Beam tests & devices tested at HZB

- 3 runs at V20 & 1 at V17 (>20 days of beam time)
 - February 2019: focus on V-based monitor
 - May 2019: focus on DAQ integration and timing
 - July 2019 (parasitic): focus on the CDT ionization chamber
- 2 MWPC (³He, N₂), V monitor, fission chamber, ionisation chamber

Setup with official ESS DAQ readout

Fission chamber (LND 3054)

Fission chamber (LND 3054)

Fission chamber (LND 3054)

- Points are derived with threshold applied and background subtracted.
- Input to efficiency correction for absolute flux determination.
- Linear response up to 6 x 10⁶ n/cm²/s

Ionisation chamber (I-BM CDT)

- The I-BM CDT has an inherent method for rejecting γ background by design.
- Flux for the specific model is calculated as $\Phi = 3.9^{*}10^{14}$ I_{monitor} = $1.3^{*}10^{8}$ V_{out}
- Increased confidence for high flux use

V monitor

- Performance understood
- Absolute flux correction achieved
- Linear response up to 700 kHz incoming beam intensity
- Can reach 1 GHz
- Time-stamped data taken with 2 active detector lengths
- Parameter optimisation in progress
- Paper ready by December
- See my IEEE talk: Thu, 31 Oct, 16:35, N-38-03
- <u>https://jinst.sissa.it/jinst/theses/2019_JINST_TH_004.js</u>

SPALLATION SOURCE

EUROPEAN

Spatial envelopes

BIFROST Liam Whitelegg MAGIC Sergey Klimko

Spatial envelopes

Spatial envelopes

FREIA – Jon Elmer

Simulation tools & projects

- MCPL: Monte Carlo Particle Lists [1]
- NCrystal [2]: thermal neutron transport library
- ESS Detector Group simulation framework [3]
- Beam monitors: efficiency, scattering, transmission [4]
- MultiGrid: backgrounds from scattering and shielding
- Jalousie spatial resolution for diffractometers HEIMDAL and MAGiC
- Boron Coated Straws: absorption, scattering, activation, efficiency
- BIFROST: incident detector rates (signal and background)

^[1] X. X. Cai, T. Kittelmann, "NCrystal : a library for thermal neutron transport", Computer Physics Communications (2019), <u>https://doi.org/10.1016/j.cpc.2019.07.015</u> [2] T. Kittelmann et al., "Geant4 Based Simulations for Novel Neutron Detector Development", CHEP 2013, <u>doi:10.1088/1742-6596/513/2/022017</u>

 ^[2] T. Kittelmann et al., Monte Carlo Particle Lists: MCPL, Computer Physics Communications, Volume 218, September 2017, Pages 17-42, ISSN 0010-4655, https://doi.org/10.1016/j.cpc.2017.04.012

^[4] F. Issa et al., "Characterization of thermal neutron beam monitors", Phys. Rev. Accel. Beams 20, 092801, (2017)

Codes with MCPL support

https://mctools.github.io/mcpl/ http://ecns2019.essworkshop.org/talks/05.pdf

The NCrystal project

https://mctools.github.io/ncrystal/

NCrystal X. X. Cai & T. Kittelmann

Geant 4 hadElastic process Geant 4 nCapture process

> Geant4 neutronInelastic process NCrystal scatter process

Original motivation:

Augment Geant4 with proper modelling of thermalised neutrons in crystalline materials (and avoid the usual free-gas treatment)

 10^{3}

 10^{2}

Bragg diffraction in polycrystals and powders

NCrystal X. X. Cai & T. Kittelmann

Based on provided HKL planes with d-spacings and structure factors, the implementation is straight-forward. Care is taken to be extremely fast O(ns/call), even in case of huge number of planes.

Geant4 free-gas model (wrong MFP, wrong scatter)

Geant4 with NCrystal ⇒Debye-Scherrer cones

Special anisotropic model for Pyrolytic Graphite PG often used as filters, monochromator, analyser

Layered crystal model:

- Usual Gaussian mosaic distribution is "smeared out" by rotation
- Exhibits both single-crystal and powder features.

- Cross-sections determined by efficient pre-search followed by fast Romberg integration of SC Gaussian mosaicity code.
- Features realistic transmission probabilities and multiple-scattering effects (ipcl. "rig. zag. walk").
 - → World-leading realism in PG modelling!!!

https://github.com/mctools/ncrystal/wiki

19

BM Geant4 simulations

- Impact of BM materials on
 - Transmission
 - Scattering
 - Efficiency
- Means for efficiency corrections
- Means for parameter optimisation

49

Impact of multiple BM windows

Need a definition for scattering that serves instrument purposes.

MultiGrid Geant4 simulations

- Studies of background from scattering
 - Impact of entrance window thickness
 - Impact of local internal shielding
 - Impact of radial blade coating
- Ph.D. thesis published by Eszter Dian
- See Eszter's talk on Monday 2:52 PM, N-03-05

E. Dian et al., "Suppression of intrinsic neutron background in the Multi-Grid detector", JINST 14 (2019) P01021, DOI:<u>10.1088/1748-0221/14/01/P01021</u> E. Dian et al., "Scattered neutron background in thermal neutron detectors", Nuclear Inst. and Methods in Physics Research, A 902 (2018) 173–183. DOI: <u>10.1016/j.nima.2018.04.055</u>

MultiGrid Geant4 simulations

The HEIMDAL Jalousie detector

10 nominal interactions of the incoming neutron with the ${}^{10}B_4C$ layer $\rightarrow \epsilon$ >50% at 1.8 Å.

Validation of the simulation strategy

Experimental data from G. Modzel, PhD thesis, Univ. of Heidelberg, 2014, and M. Henske et al., NIMA 686(2012) 151.

53

Investigation of the detector contribution to the resolution function

GEANT4 for the HEIMDAL-Jalousie detector

GEANT4 for the WISH-like detector

GEANT4 simulations for the Jalousie detector for HEIMDAL

Goal of this simulation work is to create the detector model that can be used to investigate the performance of the detector in a virtual physics experiment and understand the detector contribution to the instrumental resolution function.

I. Stefanescu et al., "Performance study of the Jalousie detector baseline design for the ESS thermal powder diffractometer HEIMDAL through GEANT4 simulations", <u>2019 JINST 14 P1002</u>0 I. Stefanescu et al., "Neutron Detectors for the ESS diffractometers", 2017 JINST 12 P01019

56

BCS Geant4 simulations

- Scattering at acceptable levels for SANS and diffraction
- Scattering considerable for applications which are highly sensitive to it such as spectroscopy
- High transmission for small λ (60% at 0.6 Å) -> absorbent shielding
- Absorption is B4C is 6.5–8 times more than in Al and Cu combined
- Absorption in Al and Cu together is less than 5% even for highest $\boldsymbol{\lambda}$
- Use of the model for LoKI detector calibration and large geometry studies

BIFROST@ESS

- High flux indirect geometry cold spectrometer
- Small sample (1 mm³) in extreme environment
- Relatively simple beam transport and conditioning system
- Option to use full ESS pulse in low resolution mode

BIFROST Scattering Characterisation System

Geant4 model with all Q channels

Neutron intensity on the ³He triplets

Peak instantaneous incident detector rate

BIFROST conclusions

- Parameters:
 - Sample: Y_2O_3 single-crystal, hkl=2,-2,-2 (d_{hkl} = 3.0724 Å) cylindrical h=d=15 mm, mosaicity = 60 arcmin
 - Analyzer: thickness = 1 mm, mosaicity = 60 arcmin
 - Source power = 5 MW
 - PSC opening time = 5 ms (full ESS pulse)
- Time averaged incident rate on one ³He tube: 4e7 Hz
- Peak instantaneous incident rate on one tube: 1e9 Hz
- Paper ready for submission by December

Summary

- We are getting ready for detector construction
 - Engineering detector design is mature
 - Workshops are ready to host construction
 - Last issues are being "ironed out"
- Beam monitors activities are ramping up
- Simulation projects successful with addressing design issues