

Detector Development within the International Collaboration on Neutron Detectors

Karl Zeitelhack, Nigel Rhodes and members of ICND

ICANS-XXI Mito, Japan 02 October 2014

History

2009 working group set up to investigate prices increases and scarcity of 3He,

Three recommendations

Potential 3He requirements over next 5 years by neutron scattering community exceeded world supply

More than 80% of 3He was in larger are detectors of inelastic neutron scattering.

Three technologies deemed viable for investigation.

Scintillation detectors based on ZnS:⁶LiF or ZnS:¹⁰B₂O₃

Gaseous detectors based on ¹⁰BF₃

Gaseous detectors based on solid ¹⁰B

ICND formed in 2010 at the request of the Facilities Directors

Collaboration is co-ordinated by Karl Zeitelhack, FRM II

There are 10 facilities contributing to the collaboration

There is a working group for each development area

Scintillator Working Group	ISIS, J-PARC, ORNL, JCNS, NIST + PSI
BF ₃ Working Group	HZB, FRM II, ILL
¹⁰ B Working Group	ILL, ESS, FRM-2, HZB

Funding is from the individual facilities to their own working groups

ICND provides a forum for the exchange of knowledge.

Research and development is costly and time consuming. Benefit greatly from the diverse expertise within the groups Try and avoid unnecessary duplication of effort.

Requirements for large area detectors INS

Area	10 - 40+ m ²
Neutron Efficiency	70% at 1 Å
Gamma Sensitvity	10 ⁻⁶ at 1 MeV
Background	0.2 c hr ⁻¹ pixel ⁻¹
Pixel size	20 x 20 mm ²
Local Count rate	50 kHz
Global Count Rate	50 kHz
Time resolution	1 μs
Environment	cryogenic vacuum

Misspositioning	
Multicount	
Dynamic Range	
COST	

Scintillation Detectors

SENJU 250 x 250 mm² detector with 4 x 4 mm² resolution

Neutron absorption of ¹⁰B is four times larger than ⁶Li.

A higher neutron absorption and lower afterglow than the commercial product

(ii) Flood neutron illumination

Count uniformity $~15 \pm 2\%$

Neutron-sensitive area	: 320 x 320 mm
Pixel size	: 20 x 20 mm
Detector efficiency	: 40% for 1.8 A
Gamma sensitivity	: ~1 x 10 ⁶
Background count	: 4 x 10 ⁻⁴ cps/cm ²
Count uniformity	: 15 ± 2%
Physical size	: 360 x 360 x 250 mm
Weight	: 12 kg
Power dissipation	: 13 W

A first prototype detector exhibited designed detector performances.

A background count, still an order larger than ³He tube, to be improved.

FRM II Forschungs-Neutronenquelle Heinz Maier-Leibnitz

Science & Technology Facilities Council

ISIS 16 x 16 cm² 64 fibres pair coded detector

ISIS 16 x 16 cm² 64 fibres quad coded detector

Printed reflector grid to reduce cross talk

Pattern recognition algorithm used for position reconstruction

Continuing to improve position algorithm

Next steps:

Double sandwich to improve efficiency Intrinsic background too high for INS

FRM II Forschungs-Neutronenquelle Heinz Maier-Leibnitz

Julich 30 x 30 cm² detector 256 fibres

		Absorption				Theo. Abs.	Absorption (Single)	Absorption (Double)	He-3
	#Probe	Density	ZnS	Dicke	1,1695 Å	1,1695 Å	1,1695 Å	1,1695 Å	Ereignisse
AST	Leermessung								3003601
	Off Reflection								12079
	23166	Normal	2	200	17,69%		17,31%	17,54%	
	23168	Normal	2	300	25,74%		24,81%	25,27%	
	23173	Normal	2	400	29,70%		28,80%	29,07%	
	23174	Normal	3	200	15,38%		15,18%		
	23178	Normal	3	300	19,92%		19,50%	19,88%	
	23182	Normal	3	400	25,23%		24,37%	24,92%	
	4318-01-01	EJ-426-1	3.2	320	21,41%		20,59%	21,08%	
	4318-02-01	EJ-426-1	3.2	500	30,57%		29,47%	27,65%	
	4318-03-01	EJ-426HD2	2	320	27,96%		27,47%	26,56%	
	4318-04-01	EJ-426HD2	2	500	39,69%		37,91%	38,48%	
	4318-07-01	EJ-426HD2A (1-1)	1	320	33,33%		32,24%	32,47%	
<u> </u>	4318-08-01	EJ-426HD2A (1-1)	1	500	46,73%		43,01%	46,20%	
1 (1)	4085-02-01	EJ-426HD	2.2	1000	31,51% 52.45% 40.96%	E1 449/			
	4318-02-01	EJ-426-1	5.2	1000	30,57%	52,45%	49,86%	51,44%	
	4085-04-01	EJ-426HD	2	1000	38,17%	62,71% 60,91%	60.700/		
1111	4318-04-01	EJ-426HD	2	1 1000	39,69%		60,91%	60,72%	
	3862-08-01	EJ-426HD2A	1	1000	51,25%	74,03%	72,64%	73,61%	
	4318-08-01	EJ-426HD2A (1-1)	1	1000	46,73%				
	4085-03-01	EJ-426HD2	2	640	27,73%	47,94%	46,50%	46,81%	
	4318-03-01	EJ-426HD2	2	040	27,96%				

At Julich Center-of-Gravity Method is used for position reconstruction

B₄**C**-diaphram with 4mm holes and 10mm spacing accurately reproduced in detector

Julich electronics

64 channel ASIC, FPGA, Optical link to PC Board design and fabrication for a 64 ch MaPMT complete FPGA board and MAROC 3 board tested ASIC control and readout programme developed Pulse simulator developed and is being commissioned

Module in fabrication.

Eight modules installed on POWGEN stands

Wavelength-Shifting Fiber Neutron Scintillator Detector

30 units installed in two SNS diffractometers, POWGEN and VULCAN

Fabrication is transferred to GE, Twinsburg, Ohio

Focusing on improvement in light coupling into fibers and larger number of phototube elements using multianode PMTs.

Expected to further improve uniformity and eliminate ghosting artifacts.

FRM II Forschungs-Neutronenquelle Heinz Maier-Leibnitz

Anger Camera Is Now In wide use at SNS

Resolution about 1.0mm (FWHM)

Distortion < 0.5mm

23 Anger Cameras Installed at TOPAZ, 70 planned or installed on other Instruments

Efforts are focused on finding higher light yield scintillators

2.8

0.45

test prototype

1/4 channel height

-ND2:1 screen -WLS fiber -Optical epoxy

PSI - POLDI beam line at SINQ

ToF diffractometer for strain measurements 4 modules 400 pixels per module Each pixel 2.5 x 200 mm

Limited space High local count rate 4 kHz per pixel Magnetic fields present

Layered machined scintillator 2.8 mm thick Each pixel twelve 0.25 mm dia fibres

neutron

↓ alpha

0.3 0.5

detection channel 2.4 mm

Each coupled to single SiPM Signal processing system to supress dark counts

SiPM readout

en-abs >80% @ 1.2 Å trigger efficiency ≈ 80%

Gamma sensitivity ≤ 10-6 for 10 filter stages and up to 2 MHz SiPM dark count rate

multi count ratio

< 1% with blocking time of 15 ms

background rate

• \leq 10-3 Hz up to 2 MHz SiPM dark count rate

- outlook: manufactoring procedure for full length detection units (200 mm), 20-channel prototype
 - further optimization of geometry of detection unit
 - further optimization of signal processing system (parameters, principle)

acknowledgement: J.-B. Mosset, A. Stoykov, Malte Hidelbrandt

NIST are developing the CANDOR instrument Chromatically Analysing Neutron Diffractometer or Reflectometer

Very Limited space Magnetic fields present

Solutiion ZnS:Ag/6LiF scintillation detector 0.5 mm dia WLS fibre

SiPM readout

Need to maximize the light content Working with Eljen to optimise scintillator light output

3 x 3 mm² SiPM

Particle size and distribution

¹⁰BF₃ Proportional Counters

Study of BF₃-filled IN5-prototype module at ILL

• Study influence of pressure on detector performance

Study of small size PSDs at HZB, ILL, BARC (India)

- Study of efficiency, position resolution, rate capability,
- For a 1" PSD: Max. pressure ~2bar, ε ~ 70% for 5.0Å Position resolution: Δx/x ~ 0.5%

Development of 3m long "Twin-tube" PSD-modules for NEAT at HZB

- Installation of specific BF₃-Lab (~100m²)
- Dedicated BF₃ Gas handling system
- Safety problems intensively studied and solved
- Production of "Twin-tube" prototype detector
- Ageing solved by proper choice of material, purification of BF₃ and admixture of agent

Infrastructure at HZB for BF₃ filled LPSD production

Solid 10B gaseous detectors

Exploration of alternative production techniques - HZB leading

The colour change signifies boron evaporation

High deposition rate achieved on silicon substrate

ülich Centre for Neutron Science PAUL SCHERRER INSTITUT

Drivers: Increase boron layer production rate: Reduce cost Need to maintain quality and long term stability

Powder spraying with microwave atmospheric

plasma selected as most promising technique

Helmholtz

FRM II Developed Macro structured converter

GARFIELD simulations:

- ✓ Electric field inside a MWPC with macrostructured cathodes;
- \checkmark Drift lines and times for electrons.

GEANT4 simulations:

- ✓ Optimal geometry of the groove to maximize the detection efficiency of the coated plate;
- \checkmark Effects of the conformality of the coating on the detection efficiency.

Gives 40% increase in efficiency cf flat layer

I. Stefanescu et al., Nuclear Instruments and Methods in Physics Research A727 (2013) 1

Macro grooved structure used in stacked MWPC concept study

40 cm x 40 cm active area 2 MWPCs sandwiched between 3 layers of macrostructured planes each coated with 1.4 μ m ¹⁰B₄C by magnetron sputtering. Ar/CO₂ gas

Multigrid detector ILL-ESS-Linkoping collaboration – partially funded by CRISP

Helmholtz

Zentrum Berlin

Huge amount of work has gone into this development Aluminium blades are sputtered with ~1 μm 10B₄C Grids isolated from each other to form position sensitive cathodes Wires run through grids the grids to form anodes

HZB

Tested on IN5 and In6

Problems in gamma sensitivity and intrinsic background overcome

Meets technical specification

Full scale demonstrator in construction

3m long 800 mm wide

512 wires

1024 grids

~18,000 blades all coated

Nearing completion

New facility running New colleague - Linda Collaborative coating requests welcomed Capacity for >1000 m² of ¹⁰B₄C per year (ESS needs ~6000 m2)

Conclusions

We meet formally once a year as a complete group

Different partners meet much more frequently

ICND enables sharing of knowledge and expertise wrt a common goal

We are far more aware of each others knowledge and capabilities as a result of ICND

A lot of work has gone on since 2010

I believe this work has benefited from the existence of ICND

How can we improve it to meet future needs?

