

Helium-3 Alternatives for Neutron Detection in Neutron Scattering Science

K. Zeitelhack

for the International Detector Initiative

Introduction

About 75% of detectors for Neutron Scattering use He-3

- highly efficient
- good position resolution
- stable
- Iow background
- very good n / γ-separation
- adequate timing

Typical Inelastic Instruments:

- Detector area is 15 50 m²
- 1" LPSDs, 2 3m long
- He-3 content: 1000 4000 L

Detector characteristics to compete

Detector characteristics	10 bar 25 mm diameter ³ He
Neutron Efficiency	70% at 1 A
Gamma sensitivity	10 ⁻⁶
Background	10 – 15 counts/ h / m
Width	25 mm
Length	1 - 3 m
Resolution	15 – 25 mm at FWHM
Local rate capability	50 kHz on a pixel
Global rate capability	50 kHz on a tube
Time resolution	1 µs
Area	15 – 40 m²
Environment	Cryogenic vacuum

Development lines of Detector Initiative

Scintillation Working Group *(ISIS, JCNS, J-Parc, NIST, ORNL)* **Investigation and development of scintillation detector technologies for large area detectors**

- Build on experience with detectors based on ZnS:⁶LiF(Ag) or ZnS:¹⁰B₂O₃(Ag) scintillators read out by coded arrays of clear or wavelength shifting fibres
- Investigate scintillators, optics, light readout devices, encoding schemes

¹⁰B-Working Group (ILL, ESS, FRM II, HZB, ORNL)

Development of solid ¹⁰Boron multilayer arrangements in gaseous large area neutron detectors

- Study ¹⁰B-coating processes
- Investigate and optimize design and fabrication of a multilayer detector in view of performance and cost

BF₃-Working Group (*HZB*, *FRM II*, *ILL*)

Investigate BF₃ as a potential fast and easy replacement of ³He

- Study gas properties, performance and limitations of BF₃
- Investigate safety issues for large scale use

¹⁰BF₃ Proportional Counters

Simple Solution ! Just replace ³He by ¹⁰BF₃ in present detector designs Works as well in a proportional counter, LPSD, MWPC

- Energy deposit 2.3 MeV / neutron
- Cross section = 72% of Helium
- Corrosive and highly toxic
- Iow pressure operation (high operation HT, attachment)

LPSD filled with ¹⁰BF₃ at high pressure

Test of ILL- IN5 prototype module filled with BF₃

- 32 tubes; 1" x 2m
- BF₃ pressure up to 2bar

Spectra @ PSD Gain for various BF3 Pressures

ISIS

NEIMCHO

Forschungs-Neutronenquelle Heinz Maier-Leibnitz

Oak Ridge National Laboratory NEUTRON SCIENCES

NST Center for Neutron Research

2000

LPSD filled with ¹⁰BF₃ at high pressure

Evaluation of PSD at FRM II and HZB

- 1" x 1m LPSD (made by Centronic, UK)
- 1.87 bar, 2800 V max. tested

NEAT – ToF spectrometer at HZB

40 m² active detector area 544 LPSDs (17 Modules) Pixel resolution 2.5 x 2.5 cm² ToF resolution < 30 μs @ 5Å 1" width, 3 m long, 90%@ 5Å

BF3 Gas handling system

T. Wilpert, (HZB)

¹⁰B-converter in gaseous detectors

n + ¹⁰B → ⁷Li (0.84MeV) + α (1.47MeV) + γ (0.48MeV) (93%)

 \rightarrow ⁷Li (1.02MeV) + a (1.78MeV) (7%)

Why using Boron as solid converter ? Boron:

- B₄C stable, not hygroscopic (e.g. as Li)
- Iarge charge signal in detector
- 96% enriched ¹⁰B available

 λ_{abs} for therm. neutrons: 20 μ m

Range: α = 3.14 µm; Li = 1,53 µm

OAK RIDGE NATIONAL LABORATORY NEUTRON SCIENCES

NUST Center fo

Single layer: ε_{det} < 5% for therm. neutrons

Detection efficiency of ¹⁰B converters

¹⁰B / ¹⁰B₄C layer production

To use this technology in large area detectors a cost effective production of the Boron layers is of crucial importance

Deposition technologies

RF / DC sputtering, e-beam evaporation, others

- Large scale production (~10³ m²)
- Layer composition: ¹⁰B, ¹⁰B₄C, …

Open questions

- Layer stability: adhesion, ageing
- Homogeneity, substrate, topology

At Linköping Univ. meanwhile about 1900 "Al-blades" (~ $6.3m^2$) have been successfully coated on both sides with ${}^{10}B_4C$ which were used in a 200cm x 8cm prototype built at ILL

ess

Stacking of 96 grids of 2 cm height electrically insulated from each other

Individual readout electronics (anodes and grids)

4 columns of 15 tubes of 192 cm length \rightarrow 60 anode wires (gold plated W 20 μ m)

Wire #

Wavelength Shifting Fibre Detector for Neutron Scattering

- The incident neutron is captured in the ⁶LiF/ZnS:Ag scintillator
- Some blue scintillation light from ZnS is shifted to green and trapped in the **WLS-fibre**
- This light is detected by PMTs in coincidence to determine the position

J-PARC

Tans

Oak Ridge National Laboratory NEUTRON SCIENCES

Challenges to a large area WLSF - detector

Decay curve

⁶LiF/ZnS:Ag ⁶LiF/ZnS:Ag is a bright but slow scintillator 1e-1 After glow Initial decay 1e-2 decrease to 10% level is 80µs; "afterglow" 1e-3 1e-4 Imits local count rate capability to ~ 20kHz 1e-5 1e-6 opaqueness limits neutron efficiency (50% @1.8A) 1e-7 1e-8 16-9 0 U U 0 020 Decay time (us) Decay time (ms) PMT signal of a neutron Low light output of WLS-fibres 0.01 Pulse Height (V) 0.00 Iow light conversion and trapping efficiency -0.01 -0.02 -0.03 Iosses due to damping and fibre bending -0.04 15 -1.0 -0.5 0.0 05 1.0 1e+7 Direct and reflected beam 1e+6 "Ghosting" (misplacement of neutrons) Neutron counts 1e+5 Occurs when afterglow from 2 neutron events 1e+4 cause signals in PMTs 1e+3 1e+2 Graphs taken from Ghosts 1e+1 360 460 480 500 520 380 440 G. Kemmerling, (FZJ); R. Cooper. (ORNL); E. Schooneveld, (ISIS) Pixel # ISIS HZB 25 NEUTRON SCIENCES rechungs-Neutronenguell

WLSF prototypes

- Linear WLSF
- 2 Flat ZnS sheets
- + 768 fibres, 0.51mm pitch, 0.5mm \varnothing
- 16 Channel MA PMT

Appropriate code and algorithm can reduce ghosting from 1% to 0.01%

Linear "sandwich" WLSF

16 elements, 2 x 200mm² coupled to single cathode PMT

WLS fibres bending radius 2.5mm with only 10% light loss

Detection efficiency at 1A: ~40 %

Gamma sensitivity at 1.2MeV: ~3x10⁻⁷

Science & Technology Facilities Council

Fiber-scintillator detectors

- Each module has 0.3 m² detection area.
- Totally 30 units (9 m²) have been installed in 2 neutron diffractometers (POWGEN, VULCAN) at SNS.
- ZnS:Ag/6LiF microparticle scintillator is used.
- 154x7 pixels, each pixel has a size of 5x50 mm.

Spatial resolution along x-axis: 4.1±0.2 mm. Ghosting/artifact in v.3 is greatly reduced.

Presentation_name

The new type of 2-d WLS fibre scintillator detector

A wide area scintillator detector has been developed using the iBIX detector technology.

Detector module

Scintillator $: B_2O_3 / ZnS$ **Pixel size** : 4 × 4 mm Sensitive area : 256 x 256 mm : 30-40% for 1.8Å **Detector efficiency** Pulse pair resolution : < 5 μs Gamma sensitivity : ~10⁻⁶ (⁶⁰Co) No. of pixels /detector : 4096 (64 ×64) No. of electronics channels : 128 (64 x 2) No. of PMTs : 2

Single X-tal diffractometer "SENJU" at BL18

31 modules were fabricated, evaluated and installed.

31 detector modules installed in the radiation shielding room of SENJU (BL18)

Conclusion and Outlook

We are on the track now !

Three working groups evaluate alternative n-detection techniques based on

- ⁶LiF/ZnS and B₂O₃/ZnS scintillation detectors with WLS-fibre readout
- Solid ¹⁰Boron converter in gaseous detectors
- BF₃-filled Linear Position Sensitive Proportional Detectors

First large scale prototype detectors were build and show promising results

There are still many open questions and problems to solve in order to achieve adequate performance

- Efficiency
- Count rate capability
- Long term stability
- Cost issues

