

State of the art neutron detection, Helium-3 crisis and potential solutions for neutron scattering applications

K. Zeitelhack

for the International Detector Initiative

Outline

- Detectors for neutron scattering
- Helium-3 supply shortage
- Initiative to develop alternative techniques to Helium-3 based detectors
 - Scintillation detector technologies
 - Boron-10 converters in gaseous detectors
 - BF₃ filled detector arrays
- Summary and Outlook

NIST Center for

Detectors for neutron scattering applications

What neutrons can do

- No electric charge, magnetic moment μ_n , only weakly interacting with matter
- Neutrons have wave character: $\lambda = 0.03 2$ nm for E = 900 0.2 meV
 - Neutrons can probe the atomic structure, magnetic properties and the dynamics of atoms in matter

Measure (Q, ω) of scattered neutrons

Detector Requirements

- highly efficient
- 2D position resolution: ~1 20mm
- time resolution: ~ 1µs
- count rate: 1 10⁶ Hz
- n / γ-separation
- size: 0,1 20 m²

Typical detectors

- Helium-3 gaseous detectors
- Li-6 based scintillation detectors
- Gd-based Image Plate detectors

ISIS

Helium-3 use in neutron scattering

Neutron Detection

- $n + {}^{3}He \rightarrow {}^{3}H + p + 765 \text{ keV}$
- σ = 5330·(λ /1.8) barn
- ~ 25,000 primary electrons / n

About 75% of detectors for **Neutron Scattering use He-3**

- highly efficient
- good position resolution
- stable
- Iow background
- very good n / γ-separation

NEWTICHA

ISIS .

adequate timing

Forschungs-Neutronenquelle Heinz Maier-Leibnitz

Some Examples I

Small Angle Scattering

Arrays of LPSDs

- high count rate (~1MHz)
- ∆x ~ 5-10 mm
- time resolution $\Delta t \sim \mu s$

SANS1 @ FRM II

128 LPSDs, 1m long, 8mm diameter, 15bar

Diffraction / Reflectometry

MWPC

- 2D position: Δx , $\Delta y \sim 1-2 \text{ mm}$
- moderate count rate (~ 200 kHz)
- time resolution $\Delta t \sim \mu s$

WOMBAT @ Ansto 120°-curved MWPC, 9,5 bar, built by BNL

Some Examples II

Typical Inelastic Instruments:

- Detector area is 15 50 m²
- 1" LPSDs, 2 3m long
- He-3 content: 1000 4000 L

Helium-3 supply shortage

In nature Helium-3 occurs with very low abundance in the atmosphere and in natural gas reservoirs; very expensive to exploit

All available Helium-3 is a by-product of Tritium production for Nuclear Weapons Programs in the USA and Russia !

- Tritium decays via
 ß-decay into Helium-3 with a 12.3 years half-life Helium-3 separated and made available via DOE Isotope Program or Russia
- Tritium production reduced significantly due to disarmament US Tritium production stopped in 1988, resumed on small scale in 2003
- Until 2001 He-3 production exceeded demands, Since 2001 increased demand depleted US stock-pile from 235,000L to 40,000 L by 2009 !

Helium-3 supply shortage

Figure 1. Size of the Helium-3 Stockpile, 1990-2010

Source: Adapted from Steve Fetter, Office of Science and Technology Policy, "Overview of Helium-3 Supply and Demand," presentation at the American Association for the Advancement of Science Workshop on Helium-3, April 6, 2010.

CAR RIDGE NATIONAL LABORATORY NEUTRON SCIENCES

Security programs and neutron research claim a 5-years demand of ~ 250,000 L !

HZB Helmholtz

DOE stops deployment of Helium-3 in 2009 !

NEWTON

ISIS .

Forschungs-Neutronenquelle Heinz Maier-Leibnitz

Helium-3 consumption in 2005 - 2009

> 80% of Helium-3 used for neutron detectors

ISIS

OAK RIDGE NATIONAL LABORATORY

Mandrein Bassarch

J-PARC

Dars

FRM II Forschungs-Neutronenquelle Heinz Maier-Leibnitz

Helium-3 Supply - Present Status

Interagency Committee set up to steer rationing and allocation of US Helium-3

- small flow of He-3 resumed from DOE stock-pile
- predicted supply of 8,000 L/Y from the US for the next 6 years; presumably similar amount from Russia
- Attempts to exploit additional sources;
 - Retrieve potential 130,000 L He-3 from Tritium extracted from CANDU heavy water reactors and stored in beds
 - Increase dedicated Tritium production by light water reactors

Availability and prices:

- DOE allocated gas for US users only: 600 \$/L for government use / fed. funded research; 1000 \$/L for commercial use
- Supply situation from Russia is non-transparent

ISIS

Non-US users face uncertain supply and rocketing prices up to 2500 €-3500 €/L

The Detector Initiative

- The He-3 supply stop prevented the completion and construction of important new instruments at almost all neutron facilities
- As a reaction the facility directors decided to initiate a common group of detector experts to prepare a joint R&D program on alternative techniques for large area neutron detectors
- Collaboration agreement signed by 9 facilities in 2010

Consortium Members

- ESS European Spallation Source, Sweden
- FRM II Forschungs-Neutronenquelle Heinz Maier-Leibnitz, Germany
- HZB Helmholtz Zentrum Berlin, Germany
- ILL Institut Max von Laue Paul Langevin, France
- ISIS Science and Technology Facilities Council, UK
- JCNS Jülich Centre for Neutron Science, Germany
- J-PARC Japan Proton Accelerator Research Complex, Japan
- NIST Centre for Neutron Research, USA
- ORNL Neutron Science Directorate, Oak Ridge National Laboratory, USA
- Highest demand to replace large He-3 filled detector arrays

NEUTRON SCIENCES

Detector characteristics to compete

Detector characteristics	10 bar 25 mm diameter ³ He
Neutron Efficiency	70% at 1 A
Gamma sensitivity	10 ⁻⁶
Background	10 – 15 counts/ h / m
Width	25 mm
Length	1 - 3 m
Resolution	15 – 25 mm at FWHM
Local rate capability	50 kHz on a pixel
Global rate capability	50 kHz on a tube
Time resolution	1 µs
Area	15 – 40 m ²
Environment	Cryogenic vacuum

Converters for neutron scattering instruments

- Need for a nuclear capture reaction. The kinetic energy range of neutrons in scattering applications is 0.2 meV – 1.5 eV. Too small for proton recoil
- Capture cross section has to steadily cover the broad energy range of neutrons with high efficiency
- Charged particles with sufficient kinetic energy have to be released from the capture reaction to create a detectable electronic signal in the detector
- Signals created by neutrons have to be clearly distinguished from response to gammas and other particles
- Isotope of choice has to be cheap, abundant and easily available
- Converter is stable and usable in "real life" conditions of a detector

Potential Neutron Converters

	Isotope	State	Reaction	Cross Section (b)	Absorb. Length	Product Energies (keV)	Product Range
(✓)	³ He	gas	³ He(n,p)t	5333	7.59 bar-cm	P:573, t:191	R _p = 0.43 bar- cm CF ₄
(✓)	⁶ Li	solid	⁶ Li(n,α)t	940	230µm	T:2727, α:2055	R _t = 130 μm
✓	¹⁰ B	solid	¹⁰ B(n,α) ⁷ Li	3836	19.9µm	α:1472, ⁷ Li:840	R _α = 3.14 μm
✓	¹⁰ BF ₃	gas	¹⁰ B(n,α) ⁷ Li	3836	9.82 bar-cm	α:1472, ⁷ Li:840	R _α = 0.42 bar- cm
x	^{nat} Gd	solid	^{nat} Gd (n,γ)	49122	6.72µm	Ce:29-182 (86.5%)	Λ _{ce} =12.3 μm

for 25meV Neutrons

Data from Th. Wilpert, (HZB)

Development lines of Detector Initiative

Scintillation Working Group *(ISIS, JCNS, J-Parc, NIST, ORNL)* **Investigation and development of scintillation detector technologies for large area detectors**

- Build on experience with detectors based on ZnS:⁶LiF(Ag) or ZnS:¹⁰B₂O₃(Ag) scintillators read out by coded arrays of clear or wavelength shifting fibres
- Investigate scintillators, optics, light readout devices, encoding schemes

¹⁰B-Working Group (ILL, ESS, FRM II, HZB, ORNL)

Development of solid ¹⁰Boron multilayer arrangements in gaseous large area neutron detectors

- Study ¹⁰B-coating processes
- Investigate and optimize design and fabrication of a multilayer detector in view of performance and cost

BF₃-Working Group (*HZB*, *FRM II*, *ILL*)

Investigate BF₃ as a potential fast and easy replacement of ³He

- Study gas properties, performance and limitations of BF₃
- Investigate safety issues for large scale use

¹⁰BF₃ Proportional Counters

Simple Solution ! Just replace ³He by ¹⁰BF₃ in present detector designs Works as well in a proportional counter, LPSD, MWPC

- Energy deposit 2.3 MeV / neutron
 - → large detector signals; good position resolution (Δ L/L = 0.6%)
 - \rightarrow excellent n / γ -separation (< 10⁻⁶)
- Cross section = 72% of Helium

BUT !

- In the past efficiency was limited by low pressure (< 1.3 bar) operation</p>
 - → several detector rows needed to achieve adequate efficiency depending on neutron wavelength
- Corrosive and highly toxic
- High voltage increases rapidly with pressure

High pressure operation feasible ?

Solution for cold neutrons only ?

Forschungs-Neutronenquelle Heinz Maier-Leibnitz

LPSD filled with ¹⁰BF₃ at high pressure

Test of ILL- IN5 prototype module filled with BF₃

32 tubes; 1" x 2m

2000

1800

BF₃ pressure up to 2bar

Spectra @ PSD Gain for various BF3 Pressures

— 0.5bar ; 1800∨

LPSD filled with ¹⁰BF₃ at high pressure

Pulse Height vs Amplitude @60° Inclination

Performance Test of BF₃ in LPDs

BF_3 Tube (1") – 60° Run Pulse Height Distribution

HV 2560 V, $\Delta x = 8$ mm fwhm

Th. Wilpert

Neutron absorption efficiency of ¹⁰BF₃

HZB Helmholtz Zentrum Berlin

ISIS

FRM II Forschungs-Neutronenquelle Heinz Maier-Leibnitz

ess

NEAT – ToF spectrometer at HZB

HZB

ISIS.

Dars

orschungs-Neutronenquelle leinz Maier-Leibnitz

NEINCIA

¹⁰B-converter in gaseous detectors

Neutron Detection

n + ¹⁰B → ⁷Li (0.84MeV) + α (1.47MeV) + γ (0.48MeV) (93%) → ⁷Li (1.02MeV) + a (1.78MeV) (7%)

Why using Boron as solid converter ?

- B₄C stable, not hygroscopic (e.g. as Li)
- Iarge charge signal in detector
- 96% enriched ¹⁰B available

State of the art detectors

- B-coated straw tubes 4mm straws by "Proportional Technologies"
- stack of B-coated GEM foils
 20x20cm² GEM by "CASCADE", Univ. Heidelberg

Many open questions

Not adapted for large area, efficiency, homogeneity, robustness, cost

¹⁰B-converter in gaseous detectors

Boron:

 λ_{abs} for therm. neutrons: 20 µm Range: α = 3.14 µm; Li = 1,53 µm

Detection efficiency of ¹⁰B converters

Charged Particle range limits single layer efficiency

The optimum layer thickness decreases as the number of layers increases.

Mars

OAK RIDGE NATIONAL LABORATORY NEUTRON SCIENCES

J-PARC

Al-Substrates

Boron layers

Detection efficiency of ¹⁰B converters

Single layer efficiency could be increased by using an inclined geometry

HZB

J-PARC

Dais

Oak Ridge National Laboratory NEUTRON SCIENCES

NIST Center for

Difficult to realize in a general purpose detector Perhaps adequate to specific designs

NEITICIA

Forschungs-Neutronenquelle Heinz Maier-Leibnitz ISIS

¹⁰B Multilayer detector concepts for large area detectors

HZB.

ISIS

Modular multi-cell structure

ILL: "MultiGrid"

Different approaches & designs

Present status:

orschungs-Neutronenquelle einz Maier-Leibnitz

A 16cm x 16cm prototype built at ILL has been successfully tested. An efficiency of 50% has been achieved with 28 layers of B_4C for 2.5 A neutrons.

NEW TOP N

Example: design proposed by HZB

¹⁰B / ¹⁰B₄C layer production

DC Magnetron sputtering facility

To use this technology in large area detectors a cost effective production of the Boron layers is of crucial importance

Deposition technologies

RF / DC sputtering, e-beam evaporation, others

- Large scale production (~10³ m²)
- Layer composition: ¹⁰B, ¹⁰B₄C, …

Open questions

- Layer stability: adhesion, ageing
- Homogeneity, substrate, topology

At Linköping Univ. meanwhile about 1400 "Al-blades" have been successfully coated on both sides with ¹⁰B₄C to be used in a 200cm x 8cm prototype detector built at ILL

C. Höglund, (ESS)

Present scintillation detector technology for neutron scattering

ZnS:6LiF(Ag) scintillator

 read out by coded arrays of clear fibres

GS20 ⁶Li-glass(Ce) scintillator

 read out by "Anger camera" array of photomultiplier tubes

Wavelength Shifting Fibre Detector for Neutron Scattering

- The incident neutron is captured in the ⁶LiF/ZnS:Ag scintillator
- Some blue scintillation light from ZnS is shifted to green and trapped in the **WLS-fibre**
- This light is detected by PMTs in coincidence to determine the position

Tans

Challenges to a large area WLSF - detector

⁶LiF/ZnS:Ag is a bright but slow scintillator 1e-1 After glow Initial decay 1e-2 decrease to 10% level is 80µs; "afterglow" 1e-3 1e-4 Imits local count rate capability to ~ 20kHz 1e-5 1e-6 opaqueness limits neutron efficiency (50% @1.8A) 1e-7 1e-8 16-9 0 U U 0 020 Decay time (us) Decay time (ms) PMT signal of a neutron Low light output of WLS-fibres 0.01 Pulse Height (V) 0.00 Iow light conversion and trapping efficiency -0.01 -0.02 -0.03 Iosses due to damping and fibre bending -0.04 -1.0 -0.5 0.0 05 1.0 1e+7 **Direct and reflected beam** 1e+6 "Ghosting" (misplacement of neutrons) Neutron counts 1e+5 Occurs when afterglow from 2 neutron events 1e+4 cause signals in PMTs 1e+3 1e+2 Graphs taken from Ghosts 1e+ 360 460 480 500 520 380 440 G. Kemmerling, (FZJ); R. Cooper. (ORNL); E. Schooneveld, (ISIS) Pixel # ISIS HZB NEUTRON SCIENCES

rechungs-Neutronenguell

Decay curve

⁶LiF/ZnS:Ag

15

WLSF prototype for reflectometers

- Linear WLSF
- 768 elements
- DB16 coding: 32 PMTs for 128 elements
- 2 Flat ZnS sheets
- 768 fibres, 0.51mm pitch
 0.5mm Ø, MS(300)
- 16 Channel MA PMT (H6568)

- New electronics: "Preamp" + discriminator
- Electronics on board

Science & Technology Facilities Council

Fiber-scintillator detectors

- Each module has 0.3 m² detection area.
- Totally 30 units (9 m²) have been installed in 2 neutron diffractometers at SNS.
- The detector efficiency is as good as He-3 tube detectors (25 mm diameter at 10 bar).
- It is cost-effective to replace He-3 detectors.

33 Managed by UT-Battelle for the U.S. Department of Energy

Presentation_name

Spatial-resolution for detector with new encoding

- Fiber mapping is a little different from the present version.
- Spatial resolution along x-axis is 4.1±0.2 mm.
- Ghosting (or artifact) is greatly reduced at high rate.
- Each pixel has 5 x 50 mm size, suitable for material studies in powder diffraction beamlines.

34 Managed by UT-Battelle for the U.S. Department of Energy

Presentation_name

The new type of 2-d WLS fibre scintillator detector

A wide area scintillator detector has been developed using the iBIX detector technology.

Detector module

Pixel size: $4 \times 4 \text{ mm}$ Sensitive area: $256 \times 256 \text{ mm}$ Detector efficiency: 30-40% for 1.8\AA Pulse pair resolution: $< 5 \mu \text{s}$ Gamma sensitivity: $\sim 10^{-6}$ (60 Co)No. of pixels /detector: 4096 (64×64)No. of electronics channels: 128 (64×2)No. of PMTs: 2

Single X-tal diffractometer "SENJU" at BL18

31 modules were fabricated, evaluated and installed.

31 detector modules installed in the radiation shielding room of SENJU (BL18)

Conclusion and Outlook

As a reaction to the ongoing ³He supply shortage a joint detector initiative formed by 9 international neutron scattering facilities has been formed Three working groups evaluate alternative n-detection techniques based on

- ⁶LiF/ZnS and B₂O₃/ZnS scintillation detectors with WLS-fibre readout
- Solid ¹⁰Boron converter in gaseous detectors
- BF₃-filled Linear Position Sensitive Proportional Detectors

Prototype detectors are being build and show first promising results

There are still many open questions and problems to solve in order to achieve adequate performance of the new technologies and replace commonly used ³He-detectors.

- Efficiency
- Count rate capability
- Cost issues

Helium-3 - a brief reminder

Helium-3 is a rare stable isotope with important applications:

- Cryogenics / Low temperature physics <1°K
- Medical lung imaging in conjunction with MRI
- Laser & other research
 - Helium-3 / Neon laser research
 - Gyroscopes (missile guidance & physics research)
- Neutron polarization (Helium-3 spin filter cells)

Neutron Detection

5328b thermal neutron capture x-section + high pressure operation

→ high efficiency, good γ / n separation < 10⁻⁶, inert

mainly used for:

- US homeland security and non-proliferation programmes
- Neutron scattering applications
- Oil well logging and road construction

Helium-3 supply shortage

All available Helium-3 is a by-product of Tritium production for Nuclear Weapons Programs in the USA and Russia !

- Tritium decays via ß-decay into Helium-3 with a 12.3 years half-life Helium-3 separated and made available via DOE Isotope Program or Russia
- Tritium production reduced significantly due to disarmament US Tritium production stopped in 1988, resumed on small scale in 2003
- Until 2001 He-3 production exceeded demands, Since 2001 increased demand depleted US stock-pile from 235,000L to 40,000 L by 2009 !
- Security programs and neutron research claim a 5-years demand of ~ 250,000 L !
- DOE stops deployment of Helium-3 in 2009 !

Present supply situation:

- small flow of He-3 resumed from DOE stock-pile (for US users only)
 600 \$/L for government use / fed. funded research; 1000 \$/L for commercial use
- Non-US users face uncertain supply and rocketing prices up to 2500 €-3500 €/L
- predicted supply of 8,000 L/Y from the US for the next 6 years presumably similar amount from Russia, situation non-transparent

ISIS

Helium-3 a brief reminder

In nature Helium-3 occurs with low abundance in two main sources

- The atmosphere contains ~ 280 billion Liters of Helium-3 He-concentration in air ~ 5ppm; ³He / ⁴He ratio ~ few ppm
- Natural gas reservoirs contain a He-concentration up to several % ³He / ⁴He ratio ~ 70 -200 ppb ; more promising

Liquefaction and ³He/⁴He separation expensive, not used yet !

All available Helium-3 is a by-product of Tritium production for Nuclear Weapons Programs in the USA and Russia !

- Tritium decays via
 ß-decay into Helium-3 with a 12.3 years half-life Helium-3 separated and made available via DOE Isotope Program or Russia
- Tritium production reduced significantly due to disarmament US Tritium production stopped in 1988, resumed on small scale in 2003

HZB

- Until 2001 He-3 production exceeded demands, Since 2001 increased demand depleted US stock-pile from 235,000L to 40,000 L by 2009 !
- Security programs and neutron research claim a 5-years demand of ~ 250,000 L !

Tans

J-PARC

OAK RIDGE NATIONAL LABORATORY NEUTRON SCIENCES

DOE stops deployment of Helium-3 in 2009 !

25

Forschungs-Neutronenquelle Heinz Maier-Leibnitz ISIS