

Alternative techniques to ³Helium based neutron detectors for neutron scattering applications

International Collaboration for Neutron Detector Development

Status Report

K. Zeitelhack

O July 2009: Formation of the "Technical Working Group"

Group of detector experts representing all major neutron scattering facilities Analysis of ³Helium supply and demand for neutron scattering Discussion and prioritization of alternative techniques

O October 2009: IEEE NSS-MIC 2009

Open "Workshop on alternatives to ³Helium Neutron Detectors" Link with other communities active in neutron detection

O January 2010: Proposal preparation meeting

22 participants representing 12 facilities *Preparation of a proposal for a joint R&D programme*

O March 2010: Facility directors meeting

Joint R&D Proposal presented to facility directors and accepted

O September 2010: Start of the Collaboration

Collaboration agreement of a joint R&D programme signed by 9 facilities

O Present Members of the Collaboration

ESS	European Spallation Source, Sweden	
FRM II	Forschungs-Neutronenquelle Heinz Maier-Leibnitz, Germany	
HZB	Helmholtz Zentrum Berlin, Germany	
ILL	Institut Max von Laue – Paul Langevin, France	
ISIS	Science and Technology Facilities Council, UK	
JCNS	Jülich Centre for Neutron Science, Germany	
J-PARC	Japan Proton Accelerator Research Complex, Japan	
NIST	Centre for Neutron Research, USA	
ORNL	Neutron Science Directorate, Oak Ridge National Laboratory, USA	

Objectives of the R&D Programme

³He demand for neutron scattering in 2009 – 2015

	Maintenance	New small detectors	New large detectors
	[liter / year]	[liter]	[liter]
Sum	1,521	8,658	106,572

Availability of ³He: < 20kliter / y \rightarrow request out of scope

- Give priority to the development of alternative technologies for large area position sensitive detector arrays for inelastic neutron scattering
- Technologies and Know-How developed in the course of the programme will be as valuable in the design of smaller devices
- To shorten development time and minimize risk evaluate a number of potential development lines simultaneously
- Mindful of the resources and the size of the detectors transfer of technology to industrial partners is considered beneficial
- **O** Spread results and technologies widely in the participating facilities

Detector characteristics to compete

Detector characteristics for large area inelastic scattering instruments based on ³He detectors

Detector characteristics	10 bar 25 mm diameter ³ He	
Neutron Efficiency	70% at 1 A	
Gamma sensitivity	10 ⁻⁶	
Background	10 – 15 counts/ h / m	
Width	25 mm	
Length	1 - 3 m	
Resolution	15 – 25 mm at FWHM	
Local rate capability	50 kHz on a pixel	
Global rate capability	50 kHz on a tube	
Time resolution	1 µs	
Area	15 – 40 m ²	
Environment	Cryogenic vacuum	

 Scintillation Working Group (ISIS, JCNS, J-Parc, NIST, ORNL) Investigation and development of scintillation detector technologies for large area detectors

Build on experience with detectors based on $ZnS:^{6}LiF(Ag)$ or $ZnS:^{10}B_{2}O_{3}(Ag)$ scintillators read out by coded arrays of clear or wavelength shifting fibres Investigate scintillators, optics, light readout devices, encoding schemes

○ ¹⁰B-Working Group (ILL, ESS, FRM II, HZB, ORNL)

Development of solid ¹⁰Boron multilayer arrangements in gaseous large area neutron detectors

Study ¹⁰B-coating processes

Investigate and optimize design and fabrication of a multilayer detector in view of performance and cost

O BF₃-Working Group (HZB, FRM II, ILL)

Investigate BF₃ as a potential fast and easy replacement of ³He

Study gas properties, performance and limitations of BF_3 Investigate safety issues for large scale use

Structure of tasks in the work packages

O Evaluation phase

Re-evaluation of existing Know-How Investigation of basic underlying principles

O Design and study of small size detector concepts

Proof of detector principles Evaluation and comparison of performance Optimization of design and fabrication in view of large scale production

O Fabrication of a reasonably sized scalable demonstrator

Proof of feasibility of large scale production, transfer of technology

Duration of programme

Sz-WG, ¹⁰B-WG: ~ 4 years

 BF_3 -WG: ~ 2 years

Scintillation detector technologies

NEUTRONS FOR SCIENCE

Evaluation detectors

¹⁰B-converter in gaseous detectors

n + ¹⁰B \rightarrow ⁷Li^{*} + α + 2.31 MeV (93%) \rightarrow ⁷Li + α + 2.79 MeV (7%)

 σ = 3836 barn

Single layer: $\epsilon_{det} < 5\%$ for therm. neutrons

¹⁰B-layers

Large scale production (~10²m²) Layer composition: ¹⁰B, ¹⁰B₄C, ... Deposition technologies *RF / DC sputtering, e-beam evaporation, others* Layer stability: adhesion, ageing Homogeneity, substrate, topology

detector volume

¹⁰B,¹⁰B₄C

0.84 MeV

AI

1.47 MeV

1µm

He

Neutrons

ROP SCIEN

DC Magnetron sputtering facility

Multilayer detectors concepts

20 - 30 Boron-layers required to achieve adequate detection efficiency

Different approaches & designs

ILL: "MultiGrid"

HZB: "Microstructure profile"

Other designs ?

Modular multi-cell structure

¹⁰B coating on large area

Low mass

Electronic Readout Schemes

Cost !

¹⁰BF₃ - Detectors

- Energy deposit 2.3 MeV / n \rightarrow good n / γ separation (~10⁻⁶) \rightarrow good position resolution ($\Delta L/L = 0.6\%$) High toxicity ! No high pressure operation – really ? \rightarrow low efficiency
- Talks by M. Platz, ILL & T. Wilpert, HZB

True position (mm)

Summary

- Collaboration agreement signed in September 2010
- Working Groups formed and joint R&D programmes started work plans defined
 "Kick-off"-meetings held in Grenoble and Knoxville

O Contacts:

Scintillators:	WG-Coordinator:	N. Rhodes, ISIS
¹⁰ B	WG-Coordinator:	B. Guerard, ILL
BF_3	WG-Coordinator:	T. Wilpert, HZ Berlin
	Coordinator:	K. Zeitelhack, FRM II

